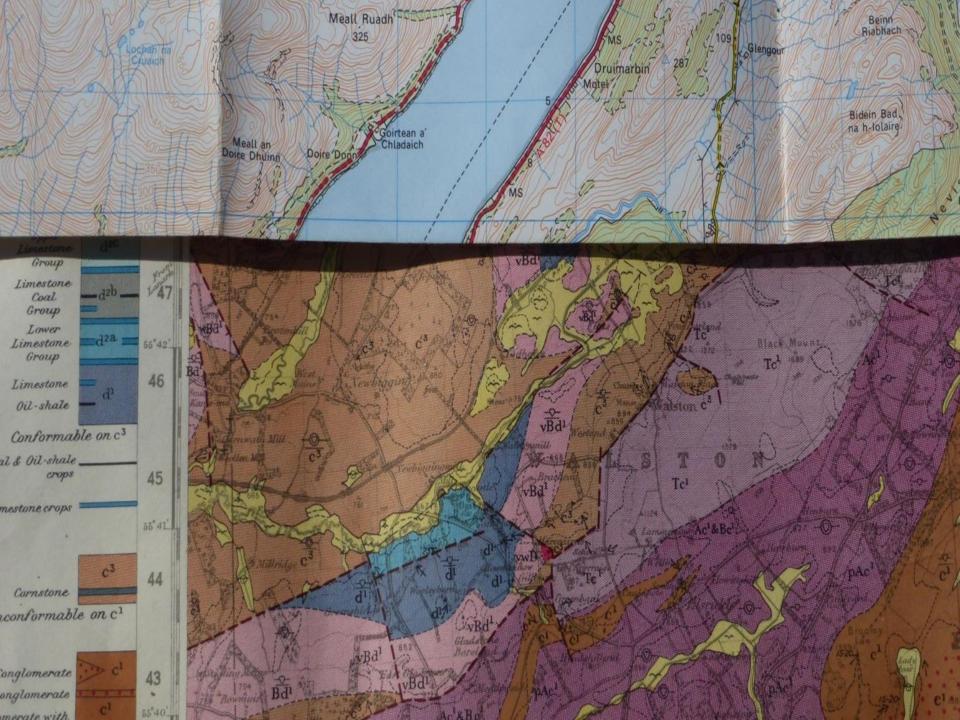
Measuring Geodiversity

Murray Gray

Queen Mary University of London & Visiting Professor, University of Minho, Portugal

*Why Measure Geodiversity?

*Why Measure Geodiversity?


- *To assess losses over time?
- *To assess relationships with measured biodiversity?
- *As a tool for land management and planning?

*Literature

- *Several papers in the last few years have tried to measure by using maps and/or satellite imagery (e.g. Hjort & Luoto, 2012; Pereira et al., 2013; Pellitero et al., 2014; Santos et al. 2017);
- *These studies have generated quantitative data that has then been used to illustrate spatial variations in "the geodiversity of a country/area";
- *In turn, it has been suggested by some that areas with the highest geodiversity should be a priority for geoconservation;
- *This talk aims to assess the validity of this approach, i.e.
 - *(1) can geodiversity be assessed from maps and/or space?
 - *(2) can this data be used as the basis for a geoconservation strategy?

*What is Geodiversity?

- *Before we can measure geodiversity we need to know what geodiversity is;
- *"Geodiversity: the natural range (diversity) of geological (rocks, minerals, fossils), geomorphological (landforms, topography, physical processes), soil and hydrological features. It includes their assemblages, structures, systems and contributions to landscapes" (Gray, 2013);
- *So can we identify all these elements of geodiversity from maps and satellite imagery?
- * Different countries have different map/satellite imagery availability.

A photorealistic hillshade model of the region, derived from the NEXTMap* digital elevation model (© Intermap Technologies Inc.) based on low-level radar survey of the ground surface District described in this report NNP boundary Wooler Rothbury Kielder Bellingham Haltwhistle

*What is Geodiversity?

- *For me, geodiversity is about the full range of abiotic diversity at all scales....
- *...so can the diversity already identified on this photo be assessed from maps or space?

*I've compiled the diversity criteria within each of the geodiversity elements in my book and analysed whether these criteria can be assessed from maps or space.

*Minerals

			Maps
Spa	ce		
*Mineral type)		
*Crystal size)		
*Crystal form & habit)		
*Hardness)		
*Cleavage)		
*Fracture)		
*Lustre)		
*Colour & streak)		
*Internal features)		
*Chemical properties)		
*Economic minerals		\checkmark	

*Igneous rocks

- *Rock type
- *Rock sub-type
- *Texture
- *Chemical & Mineral composition

Maps

αρς

 $\checkmark\checkmark$

_

_

Volcaniclastic & sub-aqueous rocks Ebisujiwa Island, Japan

Space

*Sedimentary rocks & sediments

	Maps	Space
* Rock type	$\checkmark\checkmark$	
* Rock sub-type	\checkmark	_
* Particle size distribution	_	_
& sorting		
* Particle composition		
* Particle shape		
* Colour		
* Micromorphology		

*Metamorphic rocks

- *Rock type
- *Rock sub-type
- *Cleavage & schistosity
- *Banding
- *Shear textures

Maps	Space		
//	_		
\checkmark	_		
_	_		
_	_		

Gneiss, Terras de Cavalieros Geopark, Portugal

*Structures

*Major faults and folds

*Minor faults, folds and

other structures

Maps Space

Folding, Algarve, Portugal

*Fossil species

*Fossil assemblages

Maps Space

	Maps	Space
*Soil type	//	_
*Soil sub-type	\checkmark	
*Colour	_	_
*Particle size distribution	_	
*Structure & horizonation	_	_
*Density	_	_
*Pore spaces	_	_
*Micromorphology	_	_

*Hydrological features

	Maps	Space
*Ice sheets, glaciers, etc.	//	//
Snowbeds		$\checkmark\checkmark$
*Sea ice/ice bergs		//
*Streams and rivers	//	//
*Springs	✓	✓
*Rills		
*Ponds	✓	✓
*Lakes	//	$\checkmark\checkmark$
*Waterfalls & rapids	\checkmark	//

*Landforms & topography (summary)

*Large-scale

*Meso-scale

*Micro-scale

Maps

//

 $\sqrt{}$

Space

 $\sqrt{}$

 $\sqrt{}$

South China Karst, Yangshuan

*Physical processes (summary)

Coastal erosion, Joggins, Nova Scotia, Canada

*Conclusions to Q.1

- *Some macro- and meso-scale elements of geodiversity are discernible from maps and (less so) from space;
- *But most micro-scale geodiversity cannot be assessed by these methods;
- *Geodiversity assessments based on maps and/or satellite imagery should make clear that they are only partial assessments of the geodiversity of their areas of study, as assessed from easily available data sources;
- *Total geodiversity is rather more complex.

Measuring Geodiversity

- *Many have implied or suggested that the areas with the highest geodiversity are the most worthy of geoconservation.
- *Is this a valid approach?

*Conclusions to Q.2

- *A main aim of geoconservation is to protect important geoheritage sites;
- *High quality geosites may occur in areas with low geodiversity;
- *And high geodiversity areas may have no high quality geoheritage sites.
- *So I suggest that this approach should be used with care and in association with the geosite approach.